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A longstanding problem in the social, biological, and computa-
tional sciences is to determine how groups of distributed indi-
viduals can form intelligent collective judgments. Since Galton’s
discovery of the “wisdom of crowds” [Galton F (1907) Nature
75:450–451], theories of collective intelligence have suggested
that the accuracy of group judgments requires individuals to be
either independent, with uncorrelated beliefs, or diverse, with
negatively correlated beliefs [Page S (2008) The Difference: How
the Power of Diversity Creates Better Groups, Firms, Schools,
and Societies]. Previous experimental studies have supported
this view by arguing that social influence undermines the wis-
dom of crowds. These results showed that individuals’ estimates
became more similar when subjects observed each other’s beliefs,
thereby reducing diversity without a corresponding increase in
group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D
(2011) Proc Natl Acad Sci USA 108:9020–9025]. By contrast,
we show general network conditions under which social influ-
ence improves the accuracy of group estimates, even as indi-
vidual beliefs become more similar. We present theoretical pre-
dictions and experimental results showing that, in decentralized
communication networks, group estimates become reliably more
accurate as a result of information exchange. We further show that
the dynamics of group accuracy change with network structure.
In centralized networks, where the influence of central individu-
als dominates the collective estimation process, group estimates
become more likely to increase in error.

social networks | collective intelligence | social learning |
wisdom of crowds | experimental social science

S ince Galton’s discovery of the “wisdom of crowds” over 100
years ago (1), results on crowdsourcing (1, 2), prediction mar-

kets (3), and financial forecasting (4, 5) have shown that the
aggregated judgment of many individuals can be more accurate
than the judgments of individual experts (2, 4, 6–8). Statistical
explanations for this phenomenon argue that group accuracy
relies on estimates taken from groups where individuals’ errors
are either uncorrelated or negatively correlated, thereby preserv-
ing the diversity of opinions in a population (9). Thus, although
individuals may have estimates both far above and far below the
true value, in aggregate these errors cancel out, leaving an accu-
rate group judgment (2, 9, 10).

Recent experimental evidence has suggested that the wisdom
of crowds may be undermined by processes of social influence,
in which people exchange information about their estimates and
revise their judgments to align with one another (11–13). When
social influence leads to correlated errors, both independence and
diversity are reduced, which has been argued to compromise the
reliability of the group judgment (9, 11–18). In direct contrast with
these results, however, theoretical models of social learning (19–
21) have suggested that the effects of social influence on collective
decisions vary based on the structure of the interaction network,
predicting that, under the right conditions, social learning can lead
a group’s median judgment to improve (20–24).

This prediction derives from the assumption that, when peo-
ple learn about the beliefs of others, they revise their own beliefs
to become more similar to their social referents (11, 12, 25, 26).

Following the DeGroot model of social learning, this theory sug-
gests that each individual’s revisions are based on a weighted
average of their own belief and the beliefs of their social refer-
ents (19). Thus, an individual’s revision is determined in part by
the amount of weight they place on their own belief relative to
social information. When this “self-weight” is independently and
identically distributed (i.i.d.) throughout a population, and the
population is embedded in a decentralized social network (i.e.,
one in which everyone is equally connected), this model predicts
that belief distributions will converge on the statistical mean of
the initial, independent beliefs (SI Appendix). Thus, if the ini-
tial group mean is accurate, exposure to social influence will lead
individuals in the group to become more accurate, improving the
accuracy of the group’s median, even as the group mean remains
fixed (SI Appendix).

We build on the DeGroot model to generate theoretical pre-
dictions for how social influence can affect the accuracy of group
judgments. We show that if individuals’ self-weights are not i.i.d.
in the population, but are instead correlated with individual accu-
racy, then social influence may not only improve the median
judgment by bringing it toward the mean, but may also result
in the mean of the population estimate becoming more accurate.
This prediction builds on the DeMarzo et al. (20) notion of social
influence weight, which identifies the amount of influence that
each individual in a network has on the collective belief. Because
self-weight contributes to social influence weight, a correlation
between accuracy and self-weight means that more accurate indi-
viduals will be more influential in the group estimate, resulting in
a direct improvement in the accuracy of the group mean.

Our predictions also show that this process can go awry if some
individuals in a population are more prominent than others,
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giving them disproportionate levels of social influence in the
population. Theoretical results suggest that when networks are
highly “centralized” in this way, instead of efficiently aggregat-
ing all available information, populations are biased toward the
beliefs of the central individuals (20), which can significantly
influence the accuracy of the collective judgment (SI Appendix).
This effect of centralization on group estimates has been pre-
dicted by a variety of social learning models, including both
fixed (20, 23) and growing (21, 24) networks, as well as mod-
els of both discrete choice (23, 24) and continuous estimation
(20, 21).

We test these theoretical predictions using a web-based exper-
imental design (27, 28). We recruited subjects to participate
in a series of large-group estimation tasks and compared the
effects of social influence in both centralized and decentralized
networks to a control condition in which there was no social
influence. Consistent with previous work, our theoretical results
predict that centralized networks will exhibit a bias toward the
beliefs of central individuals. However, in contrast to prior work
showing that social influence undermines group accuracy (11–
18), we predict that social influence in decentralized networks
will improve the accuracy of the group median (SI Appendix).
Moreover, we also predict that social influence can produce sys-
tematic improvements in the accuracy of the group mean if the
individual revision process is not i.i.d., but is correlated with indi-
vidual accuracy. As described below, our experimental design
permits a direct test of these theoretical predictions based on our
extensions of the DeGroot model.

Theoretical Model. We build on DeGroot’s (19) formalization of
local information aggregation, in which subject i updates their
response estimate, Rt,i , after being exposed to the estimates of
their network neighbors, R̄t,j∈Ni . We define a subject’s revision
process with three components: their own estimate; the estimates
of network neighbors; and self-weight or the amount of weight
they place on their own estimate relative to the estimates of their
network neighbors. In this model, each subject responds to social
information by adopting a weighted mean of their own estimate
and the estimates of their neighbors, according to the rule:

Rt+1,i = αi × Rt ,i + (1 − αi) × R̄t ,j∈Ni ,

where the value Rt,i indicates the response of subject i at time
t; αi indicates the self-weight a subject places on their own ini-
tial estimate; (1 − αi) indicates the weight they place on the
average estimate of their network neighbors; and R̄t,j∈Ni indi-
cates the average estimate of subject i’s network neighbors at
time t. Outcomes are therefore determined by three parameters:
the communication network (i.e., who can observe whom); the
distribution of initial estimates, R1; and the distribution of self-
weights, αi .

At the population level, this model states that the group
estimate after t revisions can be calculated as a function of a
weighted, directed network of social influence (19). In this social
influence network, a tie exists from node i to node j if i can
observe j in the communication network. The tie has a numeric
value that indicates the weight that node i places on the esti-
mate of node j, which is determined by αi . For any given node
i, the sum of the outgoing tie weights equals (1 − αi). Con-
sistent with previous implementations of this model (19–21),
we represent the self-weight that node i places on its own esti-
mate (αi) as a “self-tie” from i to i. The set of each node’s
outgoing tie weights (including their self-tie) sums to 1. The
sum of each node’s incoming ties (including their self-tie) is
proportional to their overall influence in the network during
each round of revisions—i.e., their “social influence weight,”
which is defined as each subject’s influence in the collective esti-
mation process (20). Because this sum includes the subject’s

self-weight, each subject’s influence in the collective estima-
tion process is determined in part by how heavily they weight
their own opinion compared with the social information they
receive.

This concept of social influence weight comes from the prop-
erties of the DeGroot model, in which members of a popula-
tion revise their estimates indefinitely according to the process
above. Through this revision process, the DeGroot model pre-
dicts that, in a wide range of network structures, all members of
the population will asymptotically converge on a single shared
estimate (19). The collective estimate after social influence is a
weighted mean of the initial independent estimates (20). Each
individual’s social influence weight is defined by the size of the
contribution that their initial (independent) estimate makes to
the final collective estimate (20). The relationship between self-
weight and social influence weight reflects the fact that when a
subject places more weight on their own individual belief, they
adjust their belief less in response to others, and thereby con-
tribute more weight to the group estimate (20).

In decentralized networks—defined as networks where every-
one has the same number of ties (29) —the properties of the
model described above indicate that the arithmetic mean of a
group’s estimate distribution will remain unchanged, even as
social influence leads individuals’ estimates to become more sim-
ilar. This prediction (convergence toward the mean) holds under
the assumption that self-weight is i.i.d. throughout a popula-
tion (SI Appendix). If this process accurately characterizes the
effects of influence on the wisdom of crowds, and the initial
group mean is accurate, then social influence in decentralized
networks allows individuals to increase the accuracy of their esti-
mates without any deleterious effects on group-level accuracy.
One consequence of this process is that the median of the group
estimate can improve, while the mean stays fixed (SI Appendix).

We extend these predictions by analyzing what happens when
this i.i.d. assumption is violated—i.e., there is non-i.i.d. hetero-
geneity in the degree to which individuals revise their estimates
based on the estimates of others. Our results predict that if an
individual’s self-weight is correlated with their accuracy, social
influence dynamics may not only be able to improve the median
judgment by bringing it toward the mean, but may also result in
the mean of the population estimate becoming more accurate as
a function of social influence (SI Appendix).

Experimental Design. We recruited 1,360 participants from the
World Wide Web to take part in a series of estimation chal-
lenges. Subjects were randomized either to one of two experi-
mental social network conditions or to a control condition. In all
conditions, participants were prompted to complete estimation
tasks and were awarded a monetary prize based on the accuracy
of their final estimate. In the network conditions, participants
were placed into either a decentralized network, in which every-
one had equal connectivity, or a centralized network, in which a
highly connected central member had a disproportionate num-
ber of connections (Materials and Methods and SI Appendix, Figs.
S1 and S7).

Each social network contained 40 subjects. Within each net-
work, all subjects were simultaneously shown the same image
prompt (e.g., a plate of food) and asked to estimate a numeri-
cal quantity (e.g., the caloric content) (SI Appendix). There were
three rounds for each estimation task. In round 1, participants
provided an independent estimate based on the prompt. In both
network conditions, participants were then shown the average
estimate of the peers directly connected to them in their social
network and prompted to submit their answers again in round
2. Subjects were then shown the average of their peers’ revised
estimates and prompted to submit a final estimate in round 3.
Thus, for each question, participants provided one independent
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estimate and two estimates after exposure to social information,
for a total of three estimates per question. Subjects were not pro-
vided with any information about their social networks, which
ensured that the subject experience was identical across the two
network conditions.

Subjects who were randomized to the control condition were
not placed into social networks, but were instead given the
opportunity to answer the same questions without being exposed
to social influence. These participants were still given the oppor-
tunity to revise their initial answer two times, providing a total
of three independent estimates per question. All control partic-
ipants observed the same sets of questions in the same order as
participants embedded within the experimental networks. More
generally, the subject experience in the control condition was
identical to that of subjects in other conditions, except that par-
ticipants were not given any social information.

Each experimental trial of the study consisted of an identical
set of questions provided to one decentralized network (40 indi-
viduals) and one centralized network (40 individuals). For each
set of questions that was asked in the experimental trials, we
also collected responses from 40 independent individuals in the
control condition, who collectively formed a “control group” for
that set of questions. Each subject participated only once in our
study—either in one network condition or in one control group—
such that every network condition and control group comprised
a unique set of 40 individuals.

Because subjects in the network conditions were not statisti-
cally independent, all analyses of collective estimates in the net-
work conditions were conducted at the group level (SI Appendix).
Moreover, because each network completed multiple estimation
tasks within an experimental trial, we cluster our main analysis at
the trial level such that each network provided a single, indepen-
dent observation (SI Appendix). In total, we conducted 13 exper-
imental trials, comprising 520 subjects in each network condition
(1,040 experimental subjects in total). In six of the experimental
trials, subjects answered four questions in each trial, where each
question set was unique. In the remaining seven trials, subjects
answered five questions in each trial, using two unique questions
over repeated trials. In total, this process produced eight unique
question sets.

Control groups were conducted corresponding to each unique
question set, producing eight control groups, each of size 40
(320 control subjects in total) (Materials and Methods). Because
subjects in the control groups were independent from each
other, fewer overall subjects were required for the control analy-
ses (Materials and Methods and SI Appendix). Nevertheless, for
proper comparison with the experimental conditions, we still
conducted our control trials with subjects in groups of 40 and
conducted our analyses at the group level (SI Appendix).

We measured the cumulative effect of social influence on
collective judgments by comparing the initial estimates of each
group (i.e., in round 1 of our study), with the final estimates
of each group after two rounds of revision (i.e., in round 3).
For results where we report percent change, all comparisons
were made between final estimates (i.e., round 3) and indepen-
dent estimates (i.e., round 1), so that percent change was mea-
sured as the magnitude of the change in the estimate divided
by the magnitude of the initial estimate (SI Appendix). To facil-
itate comparisons across different estimation tasks of different
scales (i.e., some questions have true answers >1,000, whereas
some questions have true answers <100), we normalized all
estimates, dividing them by the standard deviation (SD) of the
independent responses for each question (SI Appendix). All
reported changes in error were therefore measured in terms of
the distance of each estimate from the truth, represented as the
number of SDs away from the true answer (comparable to a
z-score).

Results
Social network structure significantly affected the wisdom of
crowds. We found both that decentralized networks showed the
predicted increase in collective accuracy and that centralized net-
works exhibited the predicted bias toward the beliefs of central
individuals. We begin our analysis by confirming that in the inde-
pendent round (i.e., round 1 of all trials), groups exhibited the
wisdom of crowds. Consistent with earlier studies (1, 5–8, 13),
we found that, on average, both the mean and the median of
each group’s estimate was more accurate than the majority of
its members (SI Appendix). In the results that follow, we analyze
how social influence affected the trajectory of group estimates in
each of the network conditions.

Decentralized Networks. Social influence dramatically reduced
the diversity of group estimates. As shown in Fig. 1D, two rounds
of revision significantly narrowed the SD of responses (n = 13
trials, P< 0.001, Wilcoxon signed rank test), producing a 43%
reduction in the average SD between rounds 1 and 3. This siz-
able reduction in diversity replicates the main finding from pre-
vious experimental research on social influence in the wisdom of
crowds (13).

However, this reduction in diversity did not undermine the
wisdom of crowds. Rather, consistent with previous research (30,
31), we found that social influence in decentralized networks

 0.6

 0.7

 0.8

Round One
Round Two

Round Three

N
or

m
al

iz
ed

 E
rr

or
 o

f M
ea

n

Mean
Median

Error By Round
Decentralized Networks

Center Toward Truth

Center Away From Truth

 0.1

 0.3

 0.5

 0.7

 0.9

 1.1

Round One
Round Two

Round Three
N

or
m

al
iz

ed
 E

rr
or

Mean
Median

Error By Round
Centralized Networks

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Decentralized Centralized
Away From

Truth

Centralized
Toward Truth

C
ha

ng
e 

in
 N

or
m

al
iz

ed
 E

rr
or

Mean
Median

Cumulative Change In Error

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

Round One
Round Two

Round Three

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 N

or
m

al
iz

ed
 E

st
im

at
es

Centralized
Decentralized

Standard Deviation by Round
Both Networks

A

C D

B

Fig. 1. Effect of social influence on group accuracy in centralized and
decentralized networks. Average error and SD in 13 experimental trials for
each network condition are shown. (A) In decentralized networks, both the
mean and the median became more accurate over two rounds of social
influence. (B) In centralized networks, the effect of social influence on the
accuracy of the group mean and group median was determined by the ini-
tial estimate of the central node. Results were conditioned on whether the
central node was in the direction of truth relative to the group estimate.
(C) Total change from round 1 to round 3 with bootstrapped 95% error bars,
indicating that changes shown in A and B are significant. Both the mean and
median of estimates in decentralized networks became more accurate (n =
13, P<0.01 for mean, P < 0.001 for median). For centralized networks, the
mean and median became less accurate when the central node provided an
estimate in the opposite direction of truth (n = 13, P<0.01 for both mean
and median). Both the mean and median became more accurate when the
central node provided an estimate in the direction of truth (n = 12, P<0.01
for the mean and median). (D) In both network conditions, the SD in the
distribution of estimates (i.e., diversity of opinions) decreased significantly
after each round of revision (n = 13, P<0.001 for both conditions).
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produced significant improvements in individual accuracy.
Across all 13 trials with decentralized networks, average individ-
ual error was significantly lower in round 3 than it was in round 1,
decreasing by 23% on average (n = 13 trials, P< 0.001, Wilcoxon
signed rank test). In addition to these individual-level improve-
ments, we also found that the average error of each group’s
median estimate was significantly lower in round 3 (0.67 SD)
than in round 1 (0.76 SD) (n = 13 trials, P< 0.001, Wilcoxon
signed rank test), resulting in a 12% decrease in average error,
as shown in Fig. 1 A and C.

In our analysis of how social influence produced these group-
level improvements in the median, our initial expectation was that
self-weights were i.i.d. within each network. On this assumption,
the DeGroot (19) model predicts that social influence in decen-
tralized networks can improve the group median by pushing it
toward the mean of the group’s independent estimate, which is
not expected to change (SI Appendix). Remarkably, however, we
found that, on average, each group’s mean estimate also became
more accurate. After two rounds of exposure to social influ-
ence, the average error of the group mean at round 3 (0.62 SD)
was significantly lower than at round 1 (0.69 SD) (n = 13 trials,
P< 0.01, Wilcoxon signed rank test), resulting in a 10% reduc-
tion in the average error of the group mean. These findings can
be explained with the DeGroot model by observing that individu-
als’ self-weights were not identically distributed in the population.

Fig. 2 shows that across all network conditions, the magni-
tude of an individual’s revisions from round 1 to 3 was sig-
nificantly correlated with the magnitude of their initial error
(n = 4,340 estimates by 1,040 subjects, ρ= 0.41, 95% CI [0.39,
0.43], P< 0.001, analysis of covariance). Because each individ-
ual completed multiple estimation tasks, we measure this rela-
tionship between individual accuracy and revision magnitude
after controlling for correlation between estimates by the same
individual (SI Appendix). The results (Fig. 2) show that initially
accurate individuals made smaller revisions to their estimates,
whereas initially inaccurate individuals made larger revisions.
Consistent with the DeGroot model, one explanation for this
revision pattern is that individuals who were more accurate had
greater self-weight in their revisions than individuals who were
less accurate. This explanation is consistent with the observed
behavior; however, our analysis also needs to account for the
observation that individuals who were more accurate also had
estimates that were closer to their observed neighborhood aver-
age. Consequently, the positive correlation between error and
revision magnitude may be due to the fact that subjects whose
initial estimates were farther from their neighborhood average
were inclined to make larger revisions, rather than to the fact
that more accurate individuals had a stronger self-weighting.

To control for this potentially confounding effect, we mea-
sured the partial correlation between error and revision magni-
tude, while holding constant the distance between the subject’s
initial estimate and the initial neighborhood estimate. Inset in
Fig. 2 shows that, even with this statistical control, more accurate
individuals still made smaller revisions to their estimates than
less accurate individuals (n = 4,340 estimates by 1,040 subjects,
ρ= 0.25, 95% CI [0.22, 0.28], P< 0.001, analysis of covariance).
This result suggests that accurate individuals placed more weight
on their own estimates and less weight on social information (SI
Appendix). By contrast, less inaccurate individuals had a lower
self-weight and were more influenced by social information. For
clarity, we refer to this partial correlation between accuracy and
self-weight as the revision coefficient.

As discussed above, each individual’s social influence weight
in the network is determined in part by their self-weight, so that
individuals who place more weight on their own estimate are
also more influential in the collective estimate. When considered
in the context of our theoretical model, the correlation shown
in Fig. 2 indicates that more accurate individuals had a larger
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tion of individual error (i.e., average distance from zero error), measured
for n = 4,340 estimates provided by 1,040 individuals assigned to one of 13
decentralized networks or 13 centralized networks. The graph shows a pos-
itive “revision coefficient,” such that individuals with greater error in their
initial estimates made significantly larger revisions. Controlling for corre-
lation between estimates by the same individual (SI Appendix), we find a
positive correlation between individual error and individual revision magni-
tude (n = 4,340, ρ= 0.41, 95% CI [0.39, 0.43], P<0.001). (Inset) On the y axis,
positive values indicate larger revisions than would be expected based on
the distance between an individual’s estimate and their neighborhood esti-
mate. On the x axis, positive values indicate greater initial error than would
be expected given the distance between an individual’s estimate and their
neighborhood estimate. After controlling for the distance between each
individual’s initial estimate and the average estimate of their neighborhood,
there is still a significant correlation between individual error and individual
revision magnitude (n = 4,340, ρ= 0.25, 95% CI [0.22, 0.28], P<0.001).

social influence weight in the network, which can pull the group
estimate toward a more accurate mean (SI Appendix). These
analyses suggest a direct positive relationship between the aver-
age revision coefficient among the members of a group and the
expected improvement in the accuracy of the group mean. Fig.
3A shows, for decentralized networks, the correlation between
the improvement in the group mean for each question and the
group’s revision coefficient for that question for each of the
59 group estimation tasks completed in decentralized networks.
Because each group completed multiple estimation tasks, these
analyses control for correlations across multiple estimates made
by the same group (SI Appendix).

Consistent with our theoretical expectations, the correla-
tion shown in Fig. 3A indicates that, in decentralized net-
works, groups with higher revision coefficients also exhibited
larger improvements in group accuracy (n = 59 estimation tasks,
ρ= −0.71, 95% CI [−0.82, −0.56]. By contrast, Fig. 3B shows
that centralized networks (as discussed below) exhibited no sig-
nificant correlation between a group’s average revision coeffi-
cient and a change in group accuracy (n = 57 estimation tasks,
ρ= −0.16, 95% CI [−0.33, 0.10]).

Fig. 3A indicates that, in decentralized networks, the greater
the correlation between individual accuracy and self-weight, the
more likely it is that the group mean will improve. Additional
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Fig. 3. Correlations with changes in group mean. Shown are all 59 estimation tasks completed over 13 experimental trials. In centralized networks, two
estimation tasks are omitted, where the central node did not provide any response. Decentralized networks show all 59 estimation tasks. (A) In decentralized
networks, the revision coefficient for each group estimate—i.e., the partial correlation for all members of a network between individuals’ accuracy and
their revision magnitudes on a given estimation task—is highly correlated with the change in the error of the group mean (n = 59, ρ= −0.71, 95% CI [−0.84,
−0.51]). On estimation tasks in which groups exhibited larger revision coefficients, they showed significantly greater improvements in the accuracy of the
group mean. (B) By contrast, in centralized networks, there was no significant correlation between the revision coefficient and the change in group mean
(n = 57, ρ= −0.16, 95% CI [−0.33, 0.10]). (C) In centralized networks, the change in the group mean is strongly correlated with the behavior of the central
node. The difference between the initial group estimate and the initial estimate of the central node is highly correlated with the change in the group’s
estimate (n = 57, ρ= 0.92, 95% CI [0.88, 0.95]). When the central node had an estimate larger than group mean, the group mean typically increased; when
the central node was below the group mean, the group mean typically decreased.

simulation analyses, which are provided in SI Appendix, Fig. S9,
show that in decentralized networks, a positive revision coeffi-
cient is sufficient to produce increases in group accuracy, consis-
tent with our empirical findings. Notably, across all experimental
trials, the average revision coefficient for all subjects was posi-
tive (SI Appendix), suggesting that, in very large populations with
decentralized networks, social influence is likely to generate con-
sistent improvements in the accuracy of the group mean.

Control Condition. These improvements in both the mean and
the median, as well as the accuracy of individuals’ estimates, all
contrast with the results from the control condition (i.e., with-
out social influence). Subjects in the control condition were able
to revise their answers several times, but were not provided any
information about the estimates of other participants. Between
rounds 1 and 3, groups in the control condition showed only a
small (3%) decrease in average SD (SI Appendix), which was
significantly smaller than the reduction in diversity in decentral-
ized networks (43%) and centralized networks (42%) (n = 21;
13 experimental and 8 control trials, P< 0.001 for both compar-
isons, Wilcoxon rank sum test). The opportunity for revision pro-
duced a small (3%) decrease in average individual error even in
the absence of social information (n = 8 control trials, P< 0.001,
Wilcoxon signed rank test). However, this improvement was
significantly smaller than the 23% improvement by individuals
in decentralized networks (n = 21; 13 experimental and 8 con-
trol trials, P< 0.001, Wilcoxon rank sum test). Moreover, in the
control condition, these individual improvements produced no
significant changes in the accuracy of either the group mean
(P> 0.94) or the group median (P > 0.64) (complementary
analyses provided in SI Appendix). These results indicate that
the improvements in collective judgment observed in decen-
tralized networks are not explained by independent learn-
ing effects, but are due to the network dynamics of social
influence.

Centralized Networks. To analyze these effects, we divided the
group estimates in centralized networks into two categories, based

on the initial estimate of the central nodes. In one category
(“center toward truth”), the influence of the central node is
expected to increase the accuracy of the group mean. This cate-
gory includes estimates in which the central node was more accu-
rate than the group mean, and also estimates in which the cen-
tral node was less accurate, but was on the opposite side of the
truth from the group mean. For instance, if the true value is 100
and the group mean is 90, a central node with an estimate of
either 105 (more accurate) or 120 (less accurate) will pull the
group toward the truth (SI Appendix, Fig. S8). The second cat-
egory (“center away from truth”) includes trials in which the esti-
mate of the central node pulled the group mean away from the
truth—for instance, if the estimate of the central node is instead
70. This analytical strategy was used to identify the effects of social
influence on both the group mean and the group median, as re-
ported below.

All 13 trials produced responses to at least one question in
which the central individual was away from truth relative to the
group estimate, whereas only 12 trials produced responses where
the central individual was toward truth. Accordingly, our analy-
ses for each category use n = 13 trials and n = 12 trials, respec-
tively. As shown in Fig. 1 B and C, when the central individual’s
estimate was toward truth, the average error of the group mean
after social influence (0.32 SD) was 43% lower than the aver-
age error of the group mean before social influence (0.56 SD),
producing a significant increase in group accuracy (n = 12 trials,
P< 0.01, Wilcoxon signed rank test). Correspondingly, the same
analysis for the median showed that the error of the median also
decreased significantly by 48% in these group estimations from
round 1 (0.70 SD) to round 3 (0.36 SD) (n = 12 trials, P< 0.01,
Wilcoxon signed rank test). Similarly, when the central individual
provided an estimate that was away from truth, social influence
increased the error of the group mean by 19% and the error of
the median by 32% (Fig. 1 B and C), significantly reducing the
accuracy of both the mean and the median of estimates (n = 13
trials, P< 0.01 for both comparisons, Wilcoxon signed rank test).

Fig. 3C shows the effects of the central node on the collec-
tive estimate for each of the 57 estimation tasks in which the
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central node offered a response. As described above, because
each group completed multiple estimation tasks, these analy-
ses control for correlations between multiple estimations made
by the same group (SI Appendix). The positive slope in Fig. 3C
(n = 57 estimation tasks, ρ= 0.92, 95% CI [0.88, 0.95]) indicates
that the group estimates in centralized networks moved toward
the initial belief of the central individual—i.e., higher estimates
by the central node made the group mean increase, whereas
lower estimates made the group mean decrease.

Robustness. To conclude our analyses, we examined the robust-
ness of our theoretical and experimental findings under varia-
tions in the network parameters, such as average degree, graph
density, and population size. Graph density and average degree
had no effect on the results (SI Appendix, Figs. S13 and S14).
However, we found that the effects of social influence on the
wisdom of crowds are significantly strengthened with larger pop-
ulation sizes (SI Appendix). Our analyses indicate that recent
small-group studies arguing that social influence undermines the
wisdom of crowds (even in a decentralized network) (13)
were insufficiently statistically powered to identify the improve-
ments in collective accuracy that we found (SI Appendix, Fig.
S15). Additional simulation analyses, as well as supplementary
analyses of the publicly available data from these studies (SI
Appendix), show that these effects of population size can both
explain the negative findings from previous experiments using
small groups and demonstrate the generalization of our positive
results to larger population sizes.

Discussion
Our study differs in several respects from previous work on the
network dynamics of collective intelligence. Unlike research on
social coordination (28, 32, 33) and group problem-solving (34–
36), our study does not consider situations where social inter-
action is necessary for groups to achieve a collective outcome.
Instead, we identify how the network dynamics of social influence
can affect collective estimation tasks in situations where social
influence has been predicted to have a negative effect on the
quality of group judgments (2, 11–18). Our finding that groups
have the ability to generate accurate estimates, even in the pres-
ence of social influence, has useful implications for the design
of several kinds of collective decision processes. As described in
previous studies (13), if social influence did indeed undermine
the wisdom of crowds, then democratic institutions and organi-
zational decision procedures could be improved by preventing
people from communicating during a voting process (13). Based
on these ideas, commercial and nonprofit organizations have
implemented automated aggregation tools to collect individu-
als’ independent beliefs in ways that minimize the information
exchanged between them (37). Our findings argue against this
approach to aggregation. In contrast, we have shown how social
learning in networks can amplify the influence of accurate indi-
viduals, leading to both individual and collective judgments that
are more accurate than those that could typically be obtained
by independent aggregation alone. We therefore anticipate that
process interventions within political discussion settings (38) and
organizational decision contexts (2, 39) may benefit more from
approaches that manage communication networks, rather than
approaches that attempt to increase independence in the aggre-
gation process.

Materials and Methods
All subjects who participated in this study provided informed consent during
the registration process, and all procedures in this study were approved by the
Institutional Review Board of the University of Pennsylvania. Upon entering
the experimental platform, participants were randomly assigned to one of
three conditions—a decentralized random network, a centralized network,
or a control condition (SI Appendix). Once placed into a condition, players
interacted in real time for a period of approximately 15 min. For each ques-
tion, participants first provided an independent estimate without any social
information. In the network conditions, participants observed the average
response of the peers immediately connected to them in a social network and
were prompted to submit their answers again. Subjects were exposed to two
rounds of social influence before they submitted their final answer, providing
a total of three responses to each question. In the control condition, partici-
pants were given three opportunities to respond, but were not provided any
social information. Monetary rewards were based on the accuracy of subjects’
final response to each question.

To ensure that our findings are robust to variations in the distribution
of estimates, we conducted two sets of experimental trials, using questions
that generate distributions with different shapes. In the first set of trials,
subjects were given count-based questions (e.g., “how many candies are
in this jar?”). Because these are zero-bounded on the left and unbounded
on the right, count-based questions generate highly skewed distributions
(1, 13), in which the median is able to improve even if the mean remains
unchanged (SI Appendix). In the second set of trials, we asked participants
to provide responses to percentage-based question (e.g., “what percentage
of people in this photograph are wearing hats?”). These responses are con-
strained to fall between 0 and 100, and did not produce any systematic skew
in the distribution of estimates (SI Appendix).

A single experimental trial consisted of 40 individuals placed into a decen-
tralized network and 40 individuals placed into a centralized network, all of
whom were given the same question set. A control group consisted of 40
independent individuals who were all given the same question set as the 80
subjects in the corresponding experimental trial. Because the subjects in a
control trial were independent from one another, only one control trial was
conducted for each question set.

In trials where we provided count-based estimation tasks, each group
completed four tasks. We conducted six independent experimental trials of
this kind of task, with four questions each, producing a total of 24 count-
based estimations by decentralized networks and 24 count-based estima-
tions by centralized networks. We used a unique question set for each trial,
yielding six unique question sets. To create independent control groups for
each question set, we ran 6 independent control groups, each with 40 indi-
viduals, producing 24 control group estimations.

In trials where we used percentage-based estimation tasks, each group
completed five estimation tasks. We conducted 7 independent experimen-
tal trials of this kind of task, with 5 questions each, producing a total
of 35 percentage-based estimations by decentralized networks and 35
percentage-based estimations by centralized networks. We used two unique
question sets, which were randomly assigned across trials. One set was used
in three of the trials; the other was used in four of the trials. To create
independent control groups for each question set, we ran two independent
control groups, each with 40 individuals, producing 10 control group esti-
mations. Because control groups are composed of statistically independent
individuals, we only required a single control group for each question set to
compare with the experimentally replicated trials. In total, we observed 59
estimations by decentralized networks, 59 estimations by centralized net-
works, and 34 estimations by control groups.
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